

جامعة البلقاء التطبيقية

تاسست عام 1997

Engineering			
PROGRAM			
Specialization	Hybrid Vehicles Technology		
Course Number			
Course Title	Hybrid Electric Vehicles		
Credit Hours	3		
Theoretical Hours	3		
Practical Hours	0		

جامعة البلقاء التطبيقية

تاسست عام 1997

Brief Course Description:

Introduction to Hybrid Electric Vehicles, Concept of Hybrid Electric Drive Trains,
 Architectures of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains,
 Parallel Hybrid Electric Drive Trains, Torque-Coupling Parallel Hybrid Electric
 DrivTrainse, Speed-Coupling Parallel Hybrid Electric Drive Trainse, Torque-Coupling
 and Speed-Coupling Parallel Hybrid Electric Drive Trains.

Course Objectives:

- Learn the basics of Hybrid Electric Vehicles
- Starters workHybrid Electric Vehicles
- Classification systems partsHybrid Electric Vehicles
- Principles and Applications with Practical Perspectives

AL.Balga Applid University

جامعة البلقاء التطبيقية

تاسست عام 1997

Detailed Course Description:

Unit	Unit Name	Unit Content	Time
Number			Needed
1.	Introduction to Hybrid Electric Vehicles	 Basically, any vehicle power train is required to Basics of the EV Patterns of combining the power flow Classification of hybrid electric vehicles) 	2 Weeks
2.	Architectures of Hybrid Electric Drive Trains	 Series Hybrid Electric Drive Trains Parallel Hybrid Electric Drive Trains 	2 Weeks
3.	Series Hybrid Electric Drive Trains	 Configuration of a series hybrid electric drive train Series hybrid electric drive trains potentially have the following operation 	3 Weeks
4.	Parallel Hybrid Electric Drive Trains	• Configuration of a parallel hybrid electric drive train	2 Weeks
5.	Torque-Coupling Parallel Hybrid Electric Drive Trains	 requirements, engine size and engine characteristics, motor size and motor characteristics, etc. 	2 Weeks
6.	Speed-Coupling Parallel Hybrid Electric Drive Trains	 Hybrid electric drive train with speed coupling of planetary gear unit operation modes 	2 Weeks

7.	Torque-Coupling and Speed-Coupling Parallel Hybrid Electric Drive Trains.	 Alternative torque- and speed-coupling hybrid electric drive train with transmotor Integrated speed- and torque-coupling hybrid electric drive train with a transmotor Integrated speed- and torque-coupling hybrid electric drive train (Toyota Prius) 	3 Weeks
----	---	---	---------

Exams		Percentage	Data
Exams	Mid term exam	40%	
	Assignments	10%	
	Final Exams	50%	
Discussions and			
lecture presentations			

Teaching Methodology:

Lectures and presentations

Text Books & References

Textbooks:

❖ Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

- 1. [1] M. Ehsani, *The Electrically Peaking Hybrid System and Method*, U.S. patent no. 5,586,613, December 1996.
- 2. [2] C.C. Chan and K.T. Chau, Modern Electric Vehicle Technology, Oxford University
- 3. [3] Y. Gao, K.M. Rahman, and M. Ehsani, The energy flow management and battery energy capacity determination for the drive train of electrically peaking hybrid, *Society of Automotive Engineers (SAE) Journal*, Paper No. 972647, Warrendale, PA, 1997.
- 4. [4] Y. Gao, K.M. Rahman, and M. Ehsani, Parametric design of the drive train of an electrically peaking hybrid (ELPH) vehicle, *Society of Automotive Engineers (SAE) Journal*, Paper No. 970294, Warrendale, PA, 1997.
- 5. [5] Y. Gao and M. Ehsani, New Type of Transmission for Hybrid Vehicle with Speed and Torque Summation, U.S. patent pending.
 [11] Y. Gao and M. Ehsani, Series—Parallel Hybrid Drive Train with an Electric Motor of Floating Stator and Rotor, U.S. Patent pending.

تطبق هذه الخطة الدراسية اعتبارا من بداية العام الدراسي 2017/2016